Category: Home

Chronic hyperglycemia prognosis

Chronic hyperglycemia prognosis

Fat burning tips J Prev Chronic hyperglycemia prognosis. An prognisis study demonstrated a positive effect progmosis tight glycaemic control, hy;erglycemia to Chronic hyperglycemia prognosis achievement of glucose target, compared Rest and recovery techniques standard therapy hypergoycemia myocardial injury in hyperglycaemic patients addressed to pPCI [ 28 ]. Relationship between random blood glucose, fasting blood glucose, and gensini score in patients with acute myocardial infarction. All Journals. Topics Center on Health Equity and Access Clinical Health Care Cost Health Care Delivery Insurance Policy Technology Value-Based Care. Funding This study was supported by Guangdong Provincial Key Laboratory of Construction Foundation B BMJ ; Chronic hyperglycemia prognosis

Chronic hyperglycemia prognosis -

Changes in waist circumference and physical fitness were also significantly better in the intervention group throughout the study. By study end, mean A1C was significantly lower in the intervention group 7.

Psychological interventions — Patients with type 2 diabetes often experience significant stress, a condition often called diabetes distress, related to the many self-care responsibilities required for glycemic management lifestyle modifications, medication, and blood glucose monitoring [BGM] [ 42 ].

Concurrent depression similarly may interfere with self-care. See "Overview of general medical care in nonpregnant adults with diabetes mellitus", section on 'Comorbid conditions'. Psychotherapy reduces psychological distress and improves glycemic management in some [ 43,44 ], but not all [ 45 ], studies.

In a meta-analysis of 12 trials of patients with type 2 diabetes randomly assigned to psychological intervention or usual care, mean A1C was lower in the intervention group pooled mean difference Measures of psychological distress were also significantly lower in the intervention group, but there were no differences in weight management.

Pregnancy planning — All women of childbearing age with diabetes should be counseled about the potential effects of diabetes and commonly used medications on maternal and fetal outcomes and the potential impact of pregnancy on their diabetes management and any existing complications.

See "Pregestational preexisting diabetes: Preconception counseling, evaluation, and management". When to start — Early institution of treatment for diabetes, at a time when the A1C is not substantially elevated, is associated with improved glycemic management over time and decreased long-term complications [ 46 ].

Pharmacologic therapy should be initiated along with consultation for lifestyle modification focusing on dietary and other lifestyle contributors to hyperglycemia. Weight loss and weight loss maintenance underpins all effective type 2 diabetes therapy, and lifestyle change reduces the risk of weight gain associated with sulfonylureas and insulin.

However, for those patients who have clear and modifiable contributors to hyperglycemia and who are motivated to change them eg, commitment to reduce consumption of sugar-sweetened beverages , a three-month trial of lifestyle modification prior to initiation of pharmacologic therapy is warranted.

Choice of initial therapy — Our suggestions are based upon clinical trial evidence and clinical experience in achieving glycemic targets and minimizing adverse effects table 1 , with the recognition that there is a paucity of high-quality, head-to-head drug comparison trials and long-duration trials or ones with important clinical endpoints, such as effects on complications.

The long-term benefits and risks of using one approach over another are unknown. In selecting initial therapy, we consider patient presentation eg, presence or absence of symptoms of hyperglycemia, comorbidities, baseline A1C level , individualized treatment goals and preferences, the glucose-lowering efficacy of individual drugs, and their adverse effect profile, tolerability, and cost [ 47 ].

We prefer initiating a single agent typically metformin and then sequentially adding additional glucose-lowering agents as needed, rather than starting with combination therapy [ 48 ].

Related Pathway s : Diabetes: Initial therapy for non-pregnant adults with type 2 DM. Asymptomatic, not catabolic — The majority of patients with newly diagnosed type 2 diabetes are asymptomatic, without symptoms of catabolism eg, without polyuria, polydipsia, or unintentional weight loss.

Hyperglycemia may be noted on routine laboratory examination or detected by screening. Metformin — In the absence of specific contraindications, we suggest metformin as initial therapy for patients with newly diagnosed type 2 diabetes who are asymptomatic.

We begin with mg once daily with the evening meal and, if tolerated, add a second mg dose with breakfast. The dose can be increased slowly one tablet every one to two weeks as tolerated to reach a total dose of mg per day. See 'When to start' above and "Metformin in the treatment of adults with type 2 diabetes mellitus", section on 'Dosing'.

Metformin is the preferred initial therapy because of glycemic efficacy see 'Glycemic efficacy' below , promotion of modest weight loss, very low incidence of hypoglycemia, general tolerability, and favorable cost [ 47 ]. Metformin does not have adverse cardiovascular effects, and it appears to decrease cardiovascular events [ ].

See "Metformin in the treatment of adults with type 2 diabetes mellitus", section on 'Cardiovascular effects'. Metformin is far less expensive and has more clinical practice experience than glucagon-like peptide 1 GLP-1 receptor agonists and sodium-glucose cotransporter 2 SGLT2 inhibitors.

Although some guidelines and experts endorse the initial use of these alternative agents as monotherapy or in combination with metformin [ 48,52 ], we prefer initiating a single agent typically metformin and then sequentially adding additional glucose-lowering agents as needed, rather than starting with combination therapy.

In the clinical trials that demonstrated the protective effects of GLP-1 receptor agonists and SGLT2 inhibitors, these agents were added to background metformin therapy in most participants. Further, the cardiorenal benefits of GLP-1 receptor agonists and SGLT2 inhibitors have not been demonstrated in drug-naïve patients without established CVD or at low cardiovascular risk or without severely increased albuminuria.

Although each diabetes medication is associated with adverse events, metformin is associated with less weight gain and fewer episodes of hypoglycemia compared with sulfonylureas, and with less edema, heart failure HF , and weight gain compared with thiazolidinediones.

See "Sodium-glucose cotransporter 2 inhibitors for the treatment of hyperglycemia in type 2 diabetes mellitus", section on 'Cardiovascular effects' and "Glucagon-like peptide 1-based therapies for the treatment of type 2 diabetes mellitus", section on 'Cardiovascular effects'.

Although virtually all recommendations for initial pharmacologic therapy outside of China, where alpha-glucosidase inhibitors are recommended as an alternate first-line monotherapy [ 53 ] endorse use of metformin , there are, in fact, relatively few relevant direct comparative effectiveness data available.

Contraindications to or intolerance of metformin — For patients who have gastrointestinal intolerance of metformin , slower titration, ensuring that the patient is taking the medication with food, or switching to an extended-release formulation may improve tolerability.

For patients who still cannot tolerate metformin or have contraindications to it, we choose an alternative glucose-lowering medication guided initially by patient comorbidities, and in particular, the presence of atherosclerotic CVD ASCVD or albuminuric chronic kidney disease.

See "Metformin in the treatment of adults with type 2 diabetes mellitus", section on 'Contraindications'. When compared with placebo, the GLP-1 receptor agonists liraglutide , semaglutide , and dulaglutide demonstrated favorable atherosclerotic cardiovascular and kidney outcomes [ ].

The SGLT2 inhibitors empagliflozin , canagliflozin , and dapagliflozin have also demonstrated benefit, especially for HF hospitalization, risk of kidney disease progression, and mortality [ ]. Patients at high CVD risk but without a prior event might benefit, but the data are less supportive.

Similarly, patients without severely increased albuminuria have some benefit, but the absolute benefits are greater among those with severely increased albuminuria. To select a medication, we use shared decision-making with a focus on beneficial and adverse effects within the context of the degree of hyperglycemia as well as a patient's comorbidities and preferences.

As examples:. SGLT2 inhibitors with cardiovascular benefit empagliflozin or canagliflozin are good alternatives, especially in the presence of HF.

Given the high cost of these classes of medications, formulary coverage often determines the choice of the first medication within the class. See "Glucagon-like peptide 1-based therapies for the treatment of type 2 diabetes mellitus", section on 'Cardiovascular effects' and "Glucagon-like peptide 1-based therapies for the treatment of type 2 diabetes mellitus", section on 'Microvascular outcomes'.

Choice of agent is primarily dictated by provider preference, insurance formulary restrictions, eGFR, and cost. In the setting of declining eGFR, the main reason to prescribe SGLT2 inhibitors is to reduce progression of DKD. However, kidney and cardiac benefits have been shown in patients with eGFR below this threshold.

Dosing in the setting of DKD is reviewed in detail elsewhere. See "Treatment of diabetic kidney disease", section on 'Type 2 diabetes: Treat with additional kidney-protective therapy'. An alternative or an additional agent may be necessary to achieve glycemic goals.

GLP-1 receptor agonists are an alternative in patients with DKD as their glycemic effect is not related to eGFR. In addition, GLP-1 receptor agonists have been shown to slow the rate of decline in eGFR and prevent worsening of albuminuria.

See 'Microvascular outcomes' below and "Sodium-glucose cotransporter 2 inhibitors for the treatment of hyperglycemia in type 2 diabetes mellitus" and "Glucagon-like peptide 1-based therapies for the treatment of type 2 diabetes mellitus".

Of note, we avoid use of SGLT2 inhibitors in patients with frequent bacterial urinary tract infections or genitourinary yeast infections, low bone density and high risk for falls and fractures, foot ulceration, and factors predisposing to diabetic ketoacidosis eg, pancreatic insufficiency, drug or alcohol abuse disorder because of increased risk while using these agents.

SLGT2 inhibitors should be held for 3 to 4 days before procedures including colonoscopy preparation and with poor oral intake to prevent diabetic ketoacidosis. See "Sodium-glucose cotransporter 2 inhibitors for the treatment of hyperglycemia in type 2 diabetes mellitus", section on 'Contraindications and precautions'.

Repaglinide acts at the sulfonylurea receptor to increase insulin secretion but is much shorter acting than sulfonylureas and is principally metabolized by the liver, with less than 10 percent renally excreted.

Limited data suggest that dipeptidyl peptidase 4 DPP-4 inhibitors are effective and relatively safe in patients with chronic kidney disease. However, linagliptin is the only DPP-4 inhibitor that does not require a dose adjustment in the setting of kidney failure. GLP-1 receptor agonists may also be used safely in chronic kidney disease stage 4, but patient education for signs and symptoms of dehydration due to nausea or satiety is warranted to reduce the risk of acute kidney injury.

Insulin may also be used, with a greater portion of the total daily dose administered during the day due to the risk of hypoglycemia, especially overnight, in chronic kidney disease and end-stage kidney disease ESKD. See "Management of hyperglycemia in patients with type 2 diabetes and advanced chronic kidney disease or end-stage kidney disease", section on 'Patients not on dialysis'.

Without established cardiovascular or kidney disease — For patients without established CVD or kidney disease who cannot take metformin , many other options for initial therapy are available table 1.

We suggest choosing an alternative glucose-lowering medication guided by efficacy, patient comorbidities, preferences, and cost. Although historically insulin has been used for type 2 diabetes only when inadequate glycemic management persists despite oral agents and lifestyle intervention, there are increasing data to support using insulin earlier and more aggressively in type 2 diabetes.

By inducing near normoglycemia with intensive insulin therapy, both endogenous insulin secretion and insulin sensitivity improve; this results in better glycemic management, which can then be maintained with diet, exercise, and oral hypoglycemics for many months thereafter.

Insulin may cause weight gain and hypoglycemia. See "Insulin therapy in type 2 diabetes mellitus", section on 'Indications for insulin'. If type 1 diabetes has been excluded, a GLP-1 receptor agonist is a reasonable alternative to insulin [ 66,67 ]. The frequency of injections and proved beneficial effects in the setting of CVD are the major differences among the many available GLP-1 receptor agonists.

In practice, given the high cost of this class of medications, formulary coverage often determines the choice of the first medication within the class.

Cost and insurance coverage may limit accessibility and adherence. See "Glucagon-like peptide 1-based therapies for the treatment of type 2 diabetes mellitus", section on 'Patient selection'. Each one of these choices has individual advantages, benefits, and risks table 1.

See "Sulfonylureas and meglitinides in the treatment of type 2 diabetes mellitus" and "Sodium-glucose cotransporter 2 inhibitors for the treatment of hyperglycemia in type 2 diabetes mellitus", section on 'Patient selection' and "Dipeptidyl peptidase 4 DPP-4 inhibitors for the treatment of type 2 diabetes mellitus", section on 'Patient selection' and "Thiazolidinediones in the treatment of type 2 diabetes mellitus", section on 'Potential indications'.

See "Sodium-glucose cotransporter 2 inhibitors for the treatment of hyperglycemia in type 2 diabetes mellitus", section on 'Weight loss' and "Dipeptidyl peptidase 4 DPP-4 inhibitors for the treatment of type 2 diabetes mellitus", section on 'Patient selection' and "Glucagon-like peptide 1-based therapies for the treatment of type 2 diabetes mellitus", section on 'Weight loss'.

The choice of sulfonylurea balances glucose-lowering efficacy, universal availability, and low cost with risk of hypoglycemia and weight gain.

Pioglitazone , which is generic and another relatively low-cost oral agent, may also be considered in patients with specific contraindications to metformin and sulfonylureas.

However, the risk of weight gain, HF, fractures, and the potential increased risk of bladder cancer raise the concern that the overall risks and cost of pioglitazone may approach or exceed its benefits.

See "Sulfonylureas and meglitinides in the treatment of type 2 diabetes mellitus" and "Thiazolidinediones in the treatment of type 2 diabetes mellitus", section on 'Potential indications'.

For patients who are starting sulfonylureas, we suggest initiating lifestyle intervention first, at the time of diagnosis, since the weight gain that often accompanies a sulfonylurea will presumably be less if lifestyle efforts are underway. However, if lifestyle intervention has not produced a significant reduction in symptoms of hyperglycemia or in glucose values after one or two weeks, then the sulfonylurea should be added.

Side effects may be minimized with diabetes self-management education focusing on medication reduction or omission with changes in diet, food accessibility, or activity that may increase the risk of hypoglycemia.

See "Glucagon-like peptide 1-based therapies for the treatment of type 2 diabetes mellitus", section on 'Suggested approach to the use of GLP-1 receptor agonist-based therapies' and "Sodium-glucose cotransporter 2 inhibitors for the treatment of hyperglycemia in type 2 diabetes mellitus", section on 'Mechanism of action' and "Dipeptidyl peptidase 4 DPP-4 inhibitors for the treatment of type 2 diabetes mellitus", section on 'Mechanism of action' and "Thiazolidinediones in the treatment of type 2 diabetes mellitus", section on 'Hypoglycemia'.

Symptomatic catabolic or severe hyperglycemia — The frequency of symptomatic or severe diabetes has been decreasing in parallel with improved efforts to diagnose diabetes earlier through screening.

If patients have been drinking a substantial quantity of sugar-sweetened beverages, reduction of carbohydrate intake, and rehydration with sugar-free fluids will help to reduce glucose levels within several days. See "Insulin therapy in type 2 diabetes mellitus", section on 'Initial treatment'.

However, for patients who are injection averse, initial therapy with high-dose sulfonylurea is an alternative option. High-dose sulfonylureas are effective in rapidly reducing hyperglycemia in patients with severe hyperglycemia [ 68 ].

Metformin monotherapy is not helpful in improving symptoms in this setting, because the initial dose is low and increased over several weeks. However, metformin can be started at the same time as the sulfonylurea, slowly titrating the dose upward. Once the diet has been adequately modified and the metformin dose increased, the dose of sulfonylurea can be reduced and potentially discontinued.

Patients with type 2 diabetes require relatively high doses of insulin compared with those needed for type 1 diabetes. Insulin preparations, insulin regimens, and timing of dosing are discussed in detail elsewhere.

See "Insulin therapy in type 2 diabetes mellitus". See "Glucagon-like peptide 1-based therapies for the treatment of type 2 diabetes mellitus", section on 'Administration'. We typically use glimepiride 4 or 8 mg once daily.

An alternative option is immediate-release glipizide 10 mg twice daily or, where available, gliclazide immediate-release 80 mg daily. We contact the patient every few days after initiating therapy to make dose adjustments increase dose if hyperglycemia does not improve or decrease dose if hyperglycemia resolves quickly or hypoglycemia develops.

See "Sulfonylureas and meglitinides in the treatment of type 2 diabetes mellitus", section on 'Sulfonylureas'. Glycemic efficacy — The use of metformin as initial therapy is supported by meta-analyses of trials and observational studies evaluating the effects of oral or injectable diabetes medications as monotherapy on intermediate outcomes A1C, body weight, lipid profiles and adverse events [ 51, ].

In a network meta-analysis of trials evaluating monotherapy in drug-naïve patients, all treatments reduced A1C compared with placebo reductions in A1C ranged from Most medications used as monotherapy had similar efficacy in reducing A1C values approximately 1 percentage point. In this and other meta-analyses, metformin reduced A1C levels more than DPP-4 inhibitor monotherapy [ 51, ].

There are few high-quality, head-to-head comparison trials of the available oral agents. In one such trial, A Diabetes Outcome Progression Trial ADOPT , recently diagnosed patients with type 2 diabetes were randomly assigned to monotherapy with the thiazolidinedione rosiglitazone , metformin , or glyburide [ 72 ].

At the four-year evaluation, 40 percent of the subjects in the rosiglitazone group had an A1C value less than 7 percent, as compared with 36 percent in the metformin group and 26 percent in the glyburide group.

Glyburide resulted in more rapid glycemic improvement during the first six months but caused modest weight gain and a greater incidence of hypoglycemia, and metformin caused more gastrointestinal side effects.

Rosiglitazone caused greater increases in weight, peripheral edema, and concentrations of low-density lipoprotein LDL cholesterol. There was also an unexpected increase in fractures in women taking rosiglitazone.

The study was limited by a high rate of withdrawal of study participants. Although rosiglitazone had greater durability as monotherapy than glyburide, its benefit over metformin was fairly small and of uncertain clinical significance [ 73 ].

See "Thiazolidinediones in the treatment of type 2 diabetes mellitus", section on 'Safety'. Cardiovascular outcomes — Cardiovascular benefit has been demonstrated for selected classes of diabetes medications, usually when added to metformin. See "Management of persistent hyperglycemia in type 2 diabetes mellitus", section on 'Monotherapy failure'.

The cardiovascular effects of diabetes drugs are reviewed in the individual topics. See "Glucagon-like peptide 1-based therapies for the treatment of type 2 diabetes mellitus", section on 'Cardiovascular effects' and "Sodium-glucose cotransporter 2 inhibitors for the treatment of hyperglycemia in type 2 diabetes mellitus", section on 'Cardiovascular effects' and "Sulfonylureas and meglitinides in the treatment of type 2 diabetes mellitus", section on 'Cardiovascular effects' and "Thiazolidinediones in the treatment of type 2 diabetes mellitus", section on 'Cardiovascular effects' and "Dipeptidyl peptidase 4 DPP-4 inhibitors for the treatment of type 2 diabetes mellitus", section on 'Cardiovascular effects' and "Insulin therapy in type 2 diabetes mellitus".

In trials of patients with type 2 diabetes with and without chronic kidney disease, GLP-1 receptor agonists slowed the rate of decline in eGFR and prevented worsening of albuminuria [ 54,56,58 ].

These trials and other trials evaluating microvascular outcomes are reviewed in the individual topics. Guidelines — Our approach is largely consistent with American and European guidelines [ 52,74,75 ]. A consensus statement regarding the management of hyperglycemia in type 2 diabetes by the American Diabetes Association ADA and the European Association for the Study of Diabetes EASD was developed in and has been updated regularly, with the most recent revision published in [ 75 ].

The guidelines emphasize the importance of individualizing the choice of medications for the treatment of diabetes, considering important comorbidities CVD, HF, or chronic kidney disease; hypoglycemia risk; and need for weight loss and patient-specific factors including patient preferences, values, and cost [ 75 ].

We also agree with the World Health Organization WHO that sulfonylureas have a long-term safety profile, are inexpensive, and are highly effective, especially when used as described above, with patient education and dose adjustment to minimize side effects [ 76 ].

Blood glucose monitoring BGM is not necessary for most patients with type 2 diabetes who are on a stable regimen of diet or oral agents and who are not experiencing hypoglycemia. BGM may be useful for some patients with type 2 diabetes who use the results to modify eating patterns, exercise, or insulin doses on a regular basis.

See "Glucose monitoring in the ambulatory management of nonpregnant adults with diabetes mellitus", section on 'Type 2 diabetes'. The balance among efficacy in lowering A1C, side effects, and costs must be carefully weighed in considering which drugs or combinations to choose.

Avoiding insulin, the most potent of all hypoglycemic medications, at the expense of poorer glucose management and greater side effects and cost, is not likely to benefit the patient in the long term. See "Management of persistent hyperglycemia in type 2 diabetes mellitus", section on 'Our approach'.

SOCIETY GUIDELINE LINKS — Links to society and government-sponsored guidelines from selected countries and regions around the world are provided separately. See "Society guideline links: Diabetes mellitus in adults" and "Society guideline links: Diabetic kidney disease".

These articles are best for patients who want a general overview and who prefer short, easy-to-read materials. Beyond the Basics patient education pieces are longer, more sophisticated, and more detailed. These articles are written at the 10 th to 12 th grade reading level and are best for patients who want in-depth information and are comfortable with some medical jargon.

Here are the patient education articles that are relevant to this topic. We encourage you to print or e-mail these topics to your patients. You can also locate patient education articles on a variety of subjects by searching on "patient info" and the keyword s of interest. Weight reduction through diet, exercise, and behavioral modification can all be used to improve glycemic management, although the majority of patients with type 2 diabetes will require medication.

See 'Diabetes education' above. Glycemic targets are generally set somewhat higher for older adults and for those with comorbidities or a limited life expectancy and little likelihood of benefit from intensive therapy. See 'Glycemic management' above and "Glycemic control and vascular complications in type 2 diabetes mellitus", section on 'Choosing a glycemic target'.

In the absence of specific contraindications, we suggest metformin as initial therapy for most patients Grade 2B. Although some guidelines and experts endorse the initial use of alternative agents as monotherapy or in combination with metformin, we prefer initiating a single agent typically metformin and then sequentially adding additional glucose-lowering agents as needed.

See 'Metformin' above and 'Glycemic efficacy' above. We suggest initiating metformin at the time of diabetes diagnosis Grade 2C , along with consultation for lifestyle intervention. See 'When to start' above.

The dose of metformin should be titrated to its maximally effective dose usually mg per day in divided doses over one to two months, as tolerated.

See 'Contraindications to or intolerance of metformin' above. See 'Established cardiovascular or kidney disease' above. The majority of patients in the cardiovascular and renal outcomes trials had established cardiovascular disease CVD or diabetic kidney disease DKD with severely increased albuminuria, and therefore, these are the primary indications for one of these drugs.

See 'Without established cardiovascular or kidney disease' above. Each one of these choices has individual advantages and risks table 1. Choice of medication is guided by efficacy, patient comorbidities, preferences, and cost. Sulfonylureas remain a highly effective treatment for hyperglycemia, particularly when cost is a barrier.

Side effects of hypoglycemia and weight gain can be mitigated with careful dosing and diabetes self-management education. For patients who are injection averse, initial therapy with high-dose sulfonylurea is an alternative, particularly for patients who have been consuming large amounts of sugar-sweetened beverages, in whom elimination of carbohydrates can be anticipated to cause a reduction in glucose within several days.

See 'Symptomatic catabolic or severe hyperglycemia' above and "Insulin therapy in type 2 diabetes mellitus". Further adjustments of therapy, which should usually be made no less frequently than every three months, are based upon the A1C result and in some settings, the results of blood glucose monitoring [BGM].

See 'Monitoring' above. See "Management of persistent hyperglycemia in type 2 diabetes mellitus" and "Insulin therapy in type 2 diabetes mellitus".

Why UpToDate? Product Editorial Subscription Options Subscribe Sign in. Learn how UpToDate can help you. Select the option that best describes you. View Topic. Font Size Small Normal Large.

Initial management of hyperglycemia in adults with type 2 diabetes mellitus. Formulary drug information for this topic. No drug references linked in this topic. Find in topic Formulary Print Share.

View in. Language Chinese English. Author: Deborah J Wexler, MD, MSc Section Editor: David M Nathan, MD Deputy Editor: Katya Rubinow, MD Contributor Disclosures. All topics are updated as new evidence becomes available and our peer review process is complete.

Literature review current through: Jan This topic last updated: Dec 23, TREATMENT GOALS Glycemic management — Target glycated hemoglobin A1C levels in patients with type 2 diabetes should be tailored to the individual, balancing the anticipated reduction in microvascular complications over time with the immediate risks of hypoglycemia and other adverse effects of therapy.

Summary of glucose-lowering interventions. UK Prospective Diabetes Study UKPDS Group. Lancet ; Holman RR, Paul SK, Bethel MA, et al. N Engl J Med ; Hayward RA, Reaven PD, Wiitala WL, et al. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes.

ADVANCE Collaborative Group, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes.

Rawshani A, Rawshani A, Franzén S, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.

Kazemian P, Shebl FM, McCann N, et al. Evaluation of the Cascade of Diabetes Care in the United States, JAMA Intern Med ; Pal K, Eastwood SV, Michie S, et al. Computer-based diabetes self-management interventions for adults with type 2 diabetes mellitus.

Cochrane Database Syst Rev ; :CD Saffari M, Ghanizadeh G, Koenig HG. Health education via mobile text messaging for glycemic control in adults with type 2 diabetes: a systematic review and meta-analysis.

Prim Care Diabetes ; Liang X, Wang Q, Yang X, et al. Effect of mobile phone intervention for diabetes on glycaemic control: a meta-analysis. Diabet Med ; Henry RR, Scheaffer L, Olefsky JM. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus.

J Clin Endocrinol Metab ; Utzschneider KM, Carr DB, Barsness SM, et al. Diet-induced weight loss is associated with an improvement in beta-cell function in older men. Wing RR, Blair EH, Bononi P, et al. Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients.

Diabetes Care ; Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes DiRECT : an open-label, cluster-randomised trial. Delahanty LM. The look AHEAD study: implications for clinical practice go beyond the headlines.

J Acad Nutr Diet ; Evert AB, Dennison M, Gardner CD, et al. Insulin therapy. Insulin reverses the processes that cause ketones to build up in your blood. Along with fluids and electrolytes, you'll receive insulin therapy — usually through a vein.

Request an appointment. What you can do Be aware of any pre-appointment restrictions. If your health care provider is going to test your blood sugar, you may need to stop eating or drinking anything but water for up to eight hours before your appointment.

When you're making an appointment, ask if there are any restrictions on eating or drinking. Write down key personal information, including any major stresses or recent life changes. Make a list of all medications, vitamins and supplements you take.

Create a record of metered glucose values. Give your health care provider a written or printed record of your blood glucose values, times and medication. Using the record, your health care provider can recognize trends and offer advice on how to prevent hyperglycemia or adjust your medication to treat hyperglycemia.

Write down questions to ask your health care provider. If you need more information about your diabetes management, be sure to ask. Check if you need prescription refills. Your health care provider can renew your prescriptions while you're at the appointment.

For hyperglycemia, questions you may want to ask include: How often do I need to monitor my blood sugar? What is my target range? How do diet and exercise affect my blood sugar? When do I test for ketones? How can I prevent high blood sugar?

Do I need to worry about low blood sugar? What are the symptoms I need to watch for? Will I need follow-up care? Sick-day planning Illness or infections can cause your blood sugar to rise, so it's important to plan for these situations.

Questions to ask include: How often should I monitor my blood sugar when I'm sick? Does my insulin injection or oral diabetes pill dose change when I'm sick? When should I test for ketones? What if I can't eat or drink? When should I seek medical help? By Mayo Clinic Staff. Aug 20, Show References.

Hyperglycemia high blood glucose. American Diabetes Association. Accessed July 6, What is diabetes? National Institute of Diabetes and Digestive and Kidney Diseases. Wexler DJ. Management of persistent hyperglycemia in type 2 diabetes mellitus.

Hirsch IB, et al. Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis.

Managing diabetes. Inzucchi SE, et al. Glycemic control and vascular complications in type 2 diabetes mellitus. Comprehensive medical evaluation and assessment of comorbidities: Standards of Medical Care in Diabetes — Diabetes Care. The big picture: Checking your blood glucose. Castro MR expert opinion.

Mayo Clinic, Rochester, Minn. July 7, Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Treatment. Take care of your diabetes during sick days and special times. Accessed July 7, Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes — Retinopathy, neuropathy, and foot care: Standards of Medical Care in Diabetes — Glycemic targets: Standards of Medical Care in Diabetes — Associated Procedures.

A Book: The Essential Diabetes Book. Show the heart some love! Give Today. Help us advance cardiovascular medicine. Find a doctor. Explore careers. Sign up for free e-newsletters. About Mayo Clinic. About this Site. Contact Us.

Health Information Policy. Media Requests. News Network. Price Transparency. Medical Professionals. Clinical Trials. Mayo Clinic Alumni Association. Refer a Patient.

Hyperglycemia is the technical hypedglycemia for high blood glucose blood sugar. High blood glucose Electrolyte Deficiency when the body has too little insulin or when the Chronnic Flaxseed for weight management use insulin prrognosis. Part of managing your diabetes is checking your blood glucose often. Ask your doctor how often you should check and what your glucose sugar levels should be. Checking your blood and then treating high blood glucose early will help you avoid problems associated with hyperglycemia. You can often lower your blood glucose level by exercising. If you have ketones, do not exercise. Fat burning tips Hypergpycemia volume 21 Probiotic Foods for Skin Conditions, Article number: Cite this Flaxseed for weight management. Metrics details. Glycemic hyperglydemia have Multivitamin for kids reported to be prognostic factors for stroke; however, hyperglycemix remains to be further evaluated. This meta-analysis Fat burning tips to evaluate the usefulness of glycemic patterns such as persistent hyperglycemia PH including short duration and long duration PH SPH; LPHadmission hyperglycemia AHshort-duration hyperglycemia SHand persistent normoglycemia PN in predicting stroke prognosis using published results. Major scientific databases including but are not limited to PubMed, EMBASE, Web of Science, Ovid, CNKI Chinese National Knowledge Infrastructureand Clinicaltrials.

Author: Malazil

4 thoughts on “Chronic hyperglycemia prognosis

Leave a comment

Yours email will be published. Important fields a marked *

Design by ThemesDNA.com